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ON GLUING OF QUASI-PSEUDOMETRIC SPACES
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Abstract. The concept of gluing a family of T0-quasi-metric spaces along
subsets was introduced by Otafudu. In this article, we continue the study of
externally Isbell-convex and weakly externally Isbell-convex subsets of a T0-
quasi-metric space. We finally investigate some properties of the resulting T0-
quasi-metric space obtained by gluing a family of Isbell-convex T0-quasi-metric
spaces attached along isometric subspaces.

1. Introduction

How to glue a given family of metric spaces so that the resulting space satisfies
properties of the given metric spaces is a classical problem that arises in geometry.
The idea of constructing a new metric space from a family of metric spaces by
gluing them together is well known in metric geometry. For a good overview
about gluing a family of metric spaces, we refer the reader to [3].

Piatek [12] proved that if (X, dX) and (Y, dY ) are hyperconvex metric spaces
such that X∩Y = [a, b], where a and b are connected by a unique metric segment
in both X and Y, then the metric space (X ∪ Y, d), where d is defined by

d(x, y) = min
c∈[a,b]

[dX(x, c) + dY (c, y)], x ∈ X \ [a, b] and y ∈ Y \ [a, b]

is hyperconvex too.
Recently Miesch [8] studied how to glue a family of hyperconvex metric spaces

such that the resulting space remains hyperconvex. Miesch used ideas from [3]
on gluing along metric spaces by attaching them along isometric subspaces. For
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instance, he proved that the resulting metric space (X,m) from gluing a fam-
ily (Xi,mi)i∈I of hyperconvex metric spaces along a gated subset A in (Xi,mi)
whenever i ∈ I is hyperconvex. More details about the theory of gated subsets
of a metric space can be found in [4].

Hyperconvex metric spaces have been studied since 1956 (see [1]). A number
of results on hyperconvex metric spaces have found applications in many fields
of mathematics like geometry, topology, and operator theory. The importance of
hyperconvex metric is not only limited to mathematics, they are also useful in
other areas. For instance, the study of phylogenetic trees in biology and medicine
also employs hyperconvex metric spaces (see for instance [4]). These are great
motivations for extending results about hyperconvex metric spaces to the quasi-
metric point of view.

Kemajou et al. [5] introduced successfully the concept of hyperconvexity in
the setting of quasi-pseudometric spaces, which they called Isbell-convexity (or
q-hyperconvexity). Olela Otafudu [11] introduced the concept of gated sets in a
T0-quasi-metric space called in-gated set. It turns out that in a T0-quasi-metric
space, there is a dual concept called outgated set. These concepts were then
used to extend some classical results on gluing a family of hyperconvex metric
spaces along a set such that the resulting space preserves hyperconvexity from a
metric point of view to the quasi-metric setting. In this article, we continue the
study of Isbell-convex quasi-metric spaces, in particular, we focus on externally
Isbell-convex and weakly externally subsets of a T0-quasi-metric space. Moreover,
we extend the theory of gluing a family of metric spaces along isometric subsets
to the context of quasi-pseudometric spaces. We finally study some properties
of the resulting space from the gluing of a family of Isbell-convex quasi-metric
spaces along isometric subspaces which are externally Isbell-convex and weakly
externally Isbell-convex.

2. Convexity

In this section, we first recall some basic concepts on quasi-pseudometric spaces.
We then study some interesting properties of externally Isbell-convex and weakly
externally Isbell-convex subsets of a T0-quasi-metric space.

Definition 2.1. Let X be a nonempty set and let d : X×X → [0,∞) be a map.
Then d is a quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X, and
(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.

If d is a quasi-pseudometric on a set X, then the pair (X, d) is called a a quasi-
pseudometric space. Moreover, we say that d is a T0-quasi-metric provided that
it satisfies the additional condition that for any x, y ∈ X, d(x, y) = 0 = d(y, x)
implies that x = y. The set X together with a T0-quasi-metric on X is called a
quasi-metric space.

Remark 2.2. Note that if d is a quasi-metric on X, then d−1 : X ×X → [0,∞)
defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-pseudometric on
X, called the conjugate quasi-pseudometric of d. As usual, a quasi-pseudometric
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d on X such that d = d−1 is called a pseudometric on X. Furthermore, the map
ds = max{d, d−1} is a pseudometric on X. If d is a T0-quasi-metric on X, then
ds is a metric on X.

Let (X, d) be a quasi-pseudometric space and for each x ∈ X and r ∈ [0,∞),
let Cd(x, r) = {y ∈ X : d(x, y) ≤ r} be the τ(d−1)-closed ball of center x and
radius r. Furthermore, the open ball with center x and radius r is represented by
Bd(x, r) = {y ∈ X : d(x, y) < r}. If A is a subset of X and r ∈ [0,∞), then the
set Cd(A, r) defined by

Cd(A, r) = {y ∈ X : dist(A, y) = inf
x∈A

d(x, y) ≤ r}

is called τ(d−1)-closed r-neighborhood of A.

Definition 2.3 ([5, Definition 2]). A quasi-pseudometric space (X, d) is called
Isbell-convex (or q-hyperconvex ) provided that for any family (xi)i∈I of points inX
and families (ri)i∈I and (si)i∈I of nonnegative real numbers satisfying d(xi, xj) ≤
ri + sj whenever i, j ∈ I, the following condition holds:⋂

i∈I

[Cd(xi, ri) ∩ Cd−1(xi, si)] 6= ∅.

We next recall the definition of an externally Isbell-convex subset of a quasi-
pseudometric space, which was introduced in [6].

Definition 2.4 ([6, Definition 6.1]). Let (X, d) be a quasi-pseudometric space.
A subspace E of (X, d) is said to be externally Isbell-convex (or externally q-
hyperconvex) (relative to X) if given any family (xi)i∈I of points in X and families
of nonnegative real numbers (ri)i∈I and (si)i∈I , the following condition holds:

If d(xi, xj) ≤ ri + sj whenever i, j ∈ I and dist(xi, E) ≤ ri and dist(E, xi) ≤ si
whenever i ∈ I, then

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) ∩ E 6= ∅.

In what follows, we denote by Eq(X) the set of all externally Isbell-convex
subsets of a quasi-pseudometric (X, d).

For a T0-quasi-metric space (X, d), a subset A of X is called q-admissible if
and only if it can be written as the intersection of a family of sets of the form
Cd(x, r) ∩ Cd−1(x, s), with x ∈ X and r, s ≥ 0. We shall denote the collection of
all q-admissible subsets of (X, d) by Aq(X).

The proof of the following lemma is easy and we leave it to the reader.

Lemma 2.5. If (X, d) is an Isbell-convex T0-quasi-metric space, then Aq(X) ⊆
Eq(X).

Lemma 2.6 ([6, Lemma 6.4]). Let (X, d) be an Isbell-convex quasi-pseudometric
space. Suppose that E ⊆ X is externally Isbell-convex relative to X and that A
is a q-admissible subset of (X, d) such that E ∩A 6= ∅. Then E ∩A is externally
Isbell-convex relative to X.

Lemma 2.7. Let (X, d) be an Isbell-convex quasi-pseudometric space. If A ∈
Eq(X), then Cd(A, r) ∩ Cd−1(A, s) ∈ Eq(X) with r, s ≥ 0.



132 Y. MUTEMWA, O. OLELA OTAFUDU, H. SABAO

Proof. Let A be an externally Isbell-convex subset of X and let C := Cd(A, r) ∩
Cd−1(A, s). Suppose a given family (xi)i∈I of points in X and families of nonneg-
ative real numbers (ri)i∈I and (si)i∈I satisfy d(xi, xj) ≤ ri + sj whenever i, j ∈ I
and dist(xi, C) ≤ ri and dist(C, xi) ≤ si whenever i ∈ I.

By the external Isbell-convexity of A, we have⋂
i∈I

[Cd(xi, ri) ∩ Cd−1(xi, si)] ∩ A 6= ∅.

Let a ∈
⋂
i∈I [Cd(xi, ri) ∩ Cd−1(xi, si)] ∩ A. Then

d(xi, a) ≤ ri + s and
d(a, xi) ≤ si + r for all i ∈ I.

This implies that

dist(xi, A) ≤ ri + s and
dist(A, xi) ≤ si + r for all i ∈ I.

By the external Isbell-convexity of A we have⋂
i∈I

[Cd(xi, ri + s) ∩ Cd−1(xi, si + r)] ∩ C 6= ∅.

Let y ∈
⋂
i∈I [Cd(xi, ri + s) ∩ Cd−1(xi, si + r)] ∩ C; then

d(xi, y) ≤ ri + s

and
d(y, xi) ≤ si + r.

Hence
∅ 6=

⋂
i∈I

[Cd(xi, ri) ∩ Cd−1(xi, si)) ∩ (Cd(y, r) ∩ Cd−1(y, r)]

⊆
⋂

i∈I
[Cd(xi, ri) ∩ Cd−1(xi, si)] ∩ C.

�

The following theorem is the asymmetric version of the well-known Baillon’s
theorem [2], which is useful in the rest of the paper.

Theorem 2.8 ([6, Theorem 4.1]). Let (X, d) be a bounded Isbell-convex T0-quasi-
metric space. Moreover, let (Xi)i∈I be a descending family of nonempty externally
Isbell-convex subsets of X, where I is assumed to be totally ordered such that
i1, i2 ∈ I and i1 ≤ i2 if and only if Xi2 ⊆ Xi1 . Then

⋂
i∈IXi is nonempty and

externally Isbell-convex relative to X.

Proposition 2.9. If (Xi)i∈I is a family of bounded externally Isbell-convex subsets
of a T0-quasi-metric space (X, d) such that

⋂
i∈J Xi is nonempty and externally

Isbell-convex whenever J ⊆ I is finite, then the intersection
⋂
i∈I Xi is nonempty

and externally Isbell-convex.
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Proof. Consider Λ = {K ⊆ I : for all J finite, J ⊆ I,
⋂
i∈K∪J Xi is nonempty

and externally Isbell-convex }. Obviously, ∅ ∈ Λ and Λ satisfies the hypothesis of
Zorn’s lemma because of Theorem 2.8. LetK be maximal in Λ. Then,K∪{i} ∈ Λ
whenever i ∈ I. Because of the maximality of J , we have i ∈ K whenever
i ∈ I. �

The following proposition will be useful in what follows.

Proposition 2.10 ([6, Proposition 4.9]). Let (X, d) be a T0-quasi-metric space.
If Y is an externally Isbell-convex subset of (X, d) and A is an externally Isbell-
convex relative to Y , then A is also externally Isbell-convex relative to X.

Proof. Let a family (xi)i∈I of points inX and families of nonnegative real numbers
(ri)i∈I and (si)i∈I satisfy d(xi, xj) ≤ ri + sj whenever i, j ∈ I and dist(xi, A) ≤ ri
and dist(A, xi) ≤ si whenever i ∈ I. Then for i ∈ I, the set Ai = (Cd(xi, ri) ∩
Cd−1(xi, si))∩ Y is an externally Isbell-convex subset of X and Y by Lemma 2.6.

It is easy to see that Ai ∩ A 6= ∅ whenever i ∈ I and

Ai ∩ Aj = (Cd(xi, ri) ∩ Cd−1(xi, si)) ∩ (Cd(xj, rj) ∩ Cd−1(xj, sj)) ∩ Y 6= ∅

by the external Isbell-convexity of Y .
Hence A ∩

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si) = A ∩

⋂
i∈I Ai 6= ∅ by Lemma 2.9. �

Definition 2.11. Let (X, d) be a quasi-pseudometric space. A subspace E of
(X, d) is said to be weakly externally Isbell-convex (relative toX) if E is externally
Isbell-convex relative to E∪{z} for each z ∈ X. Precisely, given any family (xi)i∈I
of points in X all but at most one of which lies in E, and families of nonnegative
real numbers (ri)i∈I and (si)i∈I satisfying d(xi, xj) ≤ ri + sj, with dist(xi, E) ≤ ri
and dist(E, xi) ≤ si if xi /∈ E, it follows that

⋂
i∈I(Cd(xi, ri)∩Cd−1(xi, si))∩E 6= ∅.

Example 2.12. Let X = [0,∞) be the set of nonnegative reals equipped with
the T0-quasi-metric u(x, y) = max{x − y, 0}. Then D = [0, 1] ⊆ X is weakly
externally Isbell-convex relative to X.

Example 2.13 ([10, Example 4.3]). Consider the Isbell-convex T0-quasi-metric
space (R, u), where u(x, y) = max{x − y, 0} whenever x, y ∈ R. Then A =
Cu(2, 0) ∩ Cu−1(2, 0) is not weakly externally Isbell-convex relative to [0,∞) but
it is externally Isbell-convex relative to R.

If (X, d) is T0-quasi-metric space, then in what follows, we will denote by
Wq(X) the collection of all weakly externally Isbell-convex subsets of (X, d).

Proposition 2.14. Let (X, d) be an Isbell-convex T0-quasimetric space and A ⊆
X. Let (xi)i∈I be a family of points in X and let (ri)i∈I and (si)i∈I be two families
of nonnegative real numbers. If A =

⋂
i∈I Cd(xi, ri) ∩ Cd−1(xi, si) and r, s ≥ 0,

then Cd(A, s) ∩ Cd−1(A, r) =
⋂
i∈I Cd(xi, ri + s) ∩ Cd−1(xi, si + r) ∈ Aq(X).

Proof. Let y ∈ Cd(A, s) ∩ Cd−1(A, r); then dist(A, y) ≤ s and dist(y, A) ≤ r.
Moreover, we have d(t, y) ≤ s and d(y, t) ≤ r for some t ∈ A. Then

d(xi, y) ≤ d(xi, t) + d(t, y) ≤ ri + s,
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and
d(y, xi) ≤ d(y, t) + d(t, xi) ≤ r + si,

whenever i ∈ I. Hence y ∈
⋂
i∈I Cd(xi, ri + s) ∩ Cd−1(xi, si + r).

Conversely, let z ∈
⋂
i∈I Cd(xi, ri + s) ∩ Cd−1(xi, si + r). Then

d(xi, z) ≤ ri + s

and
d(z, xi) ≤ si + r

whenever i ∈ I. By the Isbell-convexity of (X, d), we have

∅ 6= Cd(z, r)∩Cd−1(z, s)∩
⋂

i∈I
Cd(xi, ri)∩Cd−1(xi, si) = Cd(z, r)∩Cd−1(z, s)∩A.

Let t ∈ Cd(z, r) ∩ Cd−1(z, s) ∩ A; then d(z, t) ≤ r and d(t, z) ≤ s. Therefore,

z ∈ Cd(A, s) ∩ Cd−1(A, r).

�

Proposition 2.15 (Compare [9, Lemma 2.3]). Let (X, d) be an Isbell-convex T0-
quasimetric space and let A ⊆ X. Then A is weakly externally Isbell-convex if
and only if for any x ∈ X, and by setting dist(A, x) = s and dist(x,A) = r, the
following conditions hold:

(i) The set Cd(x, s) ∩ Cd−1(x, r) ∩ A is externally Isbell-convex in A.
(ii) For any y ∈ A, there exist a, a′ ∈ Cd(x, s) ∩ Cd−1(x, r) ∩ A such that

d(x, y) = d(x, a) + d(a, y)

and
d(y, x) = d(y, a′) + d(a′, x).

Proof. Suppose thatA is weakly externally Isbell-convex. Then Cd(x, s)∩Cd−1(x, r)

∩ A is externally Isbell-convex in A as an intersection of a q-admissible and an
externally Isbell-convex subset of an Isbell-convex T0-quasi-metric space (X, d).
Furthermore, for some y ∈ A and since dist(A, x) = s and dist(x,A) = r, we have
d(y, x) ≥ s and d(x, y) ≥ r. It follows that

d(x, y) = d(x, y)− r + r

and
d(y, x) = s+ d(y, x)− s.

By the weak external Isbell-convexity of A, there exists

∅ 6= Cd(x, r) ∩ Cd−1(y, d(x, y)− r) ∩ A
and there exists

∅ 6= Cd−1(x, s) ∩ Cd(y, d(y, x)− s) ∩ A.
We observe that the family

{Cd(y, d(y, x)− s)y∈A, Cd−1(y, d(x, y)− r)y∈A, Cd−1(x, s), Cd(x, r)}

is Isbell-complete. Then by the Isbell-convexity of (X, d), there exists

a ∈ Cd(y, d(y, x)− s) ∩ Cd−1(y, d(x, y)− r) ∩ Cd(x, r) ∩ Cd−1(x, s) ∩ A.
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Then
d(x, y) ≤ d(x, a) + d(a, y) ≤ d(x, y)− r + r = d(x, y)

and
d(y, x) ≤ d(y, a) + d(a, x) ≤ s+ d(y, x)− s = d(y, x).

So d(x, y) = d(x, a) + d(a, y). By similar arguments, one shows that for

a′ ∈ Cd(y, d(y, x)− s) ∩ Cd−1(y, d(x, y)− r) ∩ Cd(x, r) ∩ Cd−1(x, s) ∩ A.
such that d(y, x) = d(y, a′) + d(a′, x).

Conversely, assume that (i) and (ii) are satisfied; then we prove that A is weakly
externally Isbell-convex. Let (xi)i∈I be a family of points in X and let (ri)i∈I and
(si)i∈I be two families of nonnegative real numbers, satisfying d(xi, xj) ≤ ri + sj,
with dist(xi, A) ≤ ri and dist(A, xi) ≤ si. Then by the Isbell-convexity of X, we
have

⋂
i∈I(Cd(xi, ri)∩Cd−1(xi, si)) 6= ∅. If x ∈

⋂
i∈I(Cd(xi, ri)∩Cd−1(xi, si)), then

for xi ∈ A, we have

dist(x,Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A) ≤ ri

and

dist(Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A, x) ≤ si.

It follows that

∅ 6=
(
A∩Cd(x, dist(x,A))∩Cd−1(x, dist(A, x))

)
∩
(⋂

i∈I
(Cd(xi, ri)∩Cd−1(xi, si))

)
.

If x ∈ X, dist(A, x) = s ≤ r1 and dist(x,A) = r ≤ r2, then Cd(x, s) ∩
Cd−1(x, r)∩A = Cd(Cd(x, s)∩Cd−1(x, r)∩A, s− r1)∩Cd−1(Cd(x, s)∩Cd−1(x, r)∩
A, r − r1). Therefore, Cd(x, s) ∩ Cd−1(x, r) ∩ A is externally Isbell-convex by
Proposition 2.14 and Lemma 12. Furthermore, by (ii) for xi ∈ A, d(x, xi) ≤
s + ri and d(xi, x) ≤ ri + si, we have dist(xi, Cd(x, s) ∩ Cd−1(x, r) ∩ A) ≤ si and
dist(Cd(x, s) ∩ Cd−1(x, r) ∩ A, xi) ≤ ri. Therefore,

A ∩
(
Cd(x, s) ∩ Cd−1(x, r)

)
∩
(⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si))

)
6= ∅.

�

Lemma 2.16 (Compare [9, Lemma 2.4]). Let (X, d) be a T0-quasi-metric space,
let A ∈ Wq(X), and let r, s ≥ 0. Then there exists a retraction ϕ : Cd(A, s) ∩
Cd−1(A, r) −→ A such that d(x, ϕ(x)) ≤ s and d(ϕ(x), x) ≤ r whenever x ∈
Cd(A, s) ∩ Cd−1(A, r).

Proof. Consider

F := {(C,ϕ) : A ⊆ C ⊆ Cd(A, s) ∩ Cd−1(A, r) and ϕ : C → A is a retraction

such that d(x, ϕ(x)) ≤ s and d(ϕ(x), x) ≤ r whenever x ∈ C}.
Let Id denote the identity map on A. Then (A, Id) ∈ F . So F 6= ∅. If we partially
order F by ((C1, ϕ1) � (C2, ϕ2) if and only if C1 ⊆ C2 and ϕ2 is an extension
of ϕ1), then each chain of (F ,�) is bounded above. So by Zorn’s lemma, F has
a maximal element. Let the maximal element of F be (C,ϕ). We have to show
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that C = Cd(A, s)∩Cd−1(A, r). Suppose that there exists x ∈ C such that x /∈ C.
Then for any y ∈ C we set ry = d(x, y) and sy = d(y, x). Then

d(x, ϕ(y)) ≤ d(x, y) + d(y, ϕ(y)) ≤ ry + s

and
d(ϕ(y), x) ≤ d(ϕ(y), y) + d(y, x) ≤ r + sy.

By the weak external Isbell-convexity of A, we have

z ∈ Cd(x, s) ∩ Cd−1(x, r) ∩
[⋂

y∈C
Cd(ϕ(y), sy) ∩ Cd−1(ϕ(y), ry)

]
∩ A.

Let y ∈ C. We define ϕ′ : C ∪{z} −→ A by ϕ′(y) = ϕ(y) if y ∈ C and ϕ′(y) = z.
Then, for each y ∈ C, we have

d(ϕ
′
(y), y) = d(ϕ(y), y) ≤ r

and
d(y, ϕ

′
(y)) = d(y, ϕ(y)) ≤ s.

Therefore, the pair (C ∪ {z}, ϕ′) contradicts the maximality of (C,ϕ) in (F ,�).
So C = Cd(A, s) ∩ Cd−1(A, r). �

Lemma 2.17. Let A be a weakly externally Isbell-convex subset of an Isbell-convex
T0-quasi-metric space (X, d). Then for any r, s ≥ 0 and for all x ∈ X, we have
that Cd(x, dist(A, x))∩Cd−1(x, dist(x,A))∩A is an externally Isbell-convex subset
of X. Moreover, for all x ∈ X, the set Cd(x, dist(x,C))∩Cd−1(x, dist(C, x))∩C
is externally Isbell-convex too, where C := Cd(A, s) ∩ Cd−1(A, r), r = dist(x,C)
and s = dist(C, x).

Proof. Let x ∈ X. Consider a family (xi)i∈I of points in Cd(A, s)∩Cd−1(A, r) and
two families (ri)i∈I and (si)i∈I of nonnegative real numbers such that d(xi, xj) ≤
ri + sj, d(xi, x) ≤ s+ ri and d(x, xi) ≤ r + si with

dist(Cd(A, s) ∩ Cd−1(A, r), x) = s

and
dist(x,Cd(A, s) ∩ Cd−1(A, r)) = r.

By Lemma 2.16, there exists a retraction ϕ : Cd(A, s)∩Cd−1(A, r)→ A such that
d(y, ϕ(y)) ≤ s and d(ϕ(y), y) ≤ r whenever y ∈ Cd(A, s) ∩ Cd−1(A, r). Then it
follows that

d(ϕ(xi), x) ≤ d(ϕ(xi), xi) + d(xi, x) ≤ r + s+ ri

and
d(x, ϕ(xi)) ≤ d(x, xi) + d(xi, ϕ(xi)) ≤ r + si + s

whenever i ∈ I. Then there exists

y ∈ Cds(x, r + s) ∩
[⋂
i∈I

Cd(ϕ(xi), ri) ∩ Cd−1(ϕ(xi), si)

]
∩ A.

Thus d(x, y) ≤ r + s, d(y, x) ≤ r + s and

d(xi, y) ≤ d(xi, ϕ(xi)) + d(ϕ(xi), y) ≤ s+ ri
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and
d(y, xi) ≤ d(y, ϕ(xi)) + d(ϕ(xi), xi) ≤ r + si

whenever i ∈ I. By the Isbell-convexity of (X, d), we have

∅ 6= Cd(x, r) ∩ Cd−1(x, s) ∩
[⋂
i∈I

Cd(xi, ri) ∩ Cd−1(xi, si)

]
∩ Cd(y, r) ∩ Cd−1(y, s)

⊆ Cd(x, r) ∩ Cd−1(x, s) ∩
[⋂
i∈I

Cd(xi, ri) ∩ Cd−1(xi, si)

]
∩ Cd(A, s) ∩ Cd−1(A, r).

Hence Cd(A, s) ∩ Cd−1(A, r) is externally Isbell-convex in X.
Furthermore, we have

Cd(x, r) ∩ Cd−1(x, s) ∩ Cd(A, s) ∩ Cd−1(A, r)

= Cd(x, r) ∩ Cd−1(x, s) ∩
[
Cd[Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A), s]

∩ Cd−1 [Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x) ∩ A), r)]

]
.

If Cd(x, dist(x,A))∩Cd−1(x, dist(A, x)∩A is externally Isbell-convex, then Cd(x, r)
∩ Cd−1(x, s) ∩ Cd(A, s) ∩ Cd−1(A, r) is also externally Isbell-convex. �

Lemma 2.18. Let (X, d) be a T0-quasi-metric space. If Y ∈ Wq(X) and A ∈
Eq(X), then A ∈ Wq(X).

Proof. Let a family (xi)i∈I of points in X and families (ri)i∈I and (si)i∈I of non-
negative real numbers satisfying d(xi, xj) ≤ ri + sj for all i, j ∈ I, dist(xi, A) ≤ ri
and dist(A, xi) ≤ si for all i ∈ I be given. Then we have for every i ∈ I, the set

Ai = Cd(xi, ri) ∩ Cd−1(xi, si) ∩ Y

is externally Isbell convex by Lemma 2.6. Furthermore, for every i ∈ I, Ai is also
externally Isbell convex relative to Y . Since for every i ∈ I, Ai ∩A 6= ∅ and Y is
externally Isbell convex, we have

Ai ∩ Aj = Cd(xi, ri) ∩ Cd−1(xi, si) ∩ Cd(xj, rj) ∩ Cd−1(xj, sj) ∩ Y 6= ∅. (2.1)

Therefore, we have pairwise intersecting externally Isbell convex subsets of Y and
by Proposition 2.9,

A ∩
⋂
i∈I

Cd(xi, ri) ∩ Cd−1(xi, si) = A ∩i∈I Ai 6= ∅.

�

3. Gluing of quasi-pseudometric spaces

The theory of amalgamation of two finite T0-quasi-metric spaces has been in-
troduced in [7]. In this section, we extend the amalgamation of two finite T0-
quasi-metric space to any family of T0-quasi-metric spaces.
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Proposition 3.1 ([11, Proposition 8]). Let (Xα, dα)α∈Γ be a family of T0-quasi-
metric spaces and let (A, dA) be a T0-quasi-metric space. If Aα ⊆ Xα and fix
some isometry ϕα : A→ Aα whenever α ∈ Γ, then there exists a T0-quasi-metric
space X =

⊔
AXα, the coproduct of Xα amalgamated along A or ϕα such that for

all a ∈ A, ϕα(a) coincides with a in X: Making use of this identification between
the elements of Aα whenever α ∈ Γ, for x ∈ Xα and y ∈ Xα′ with α 6= α

′, we set
the T0-quasi-metric d on X by

d(x, y) = inf
a∈A
{dα(x, ϕα(a)) + dα′ (ϕα′ (a), y)}

and
d(y, x) = inf

a∈A
{dα′ (y, ϕα′ (a)) + dα(ϕα(a), x)},

the subspaces Xα of X carry their T0-quasi-metrics dα, respectively.

Definition 3.2 (Compare [8, Definition 2.1]). Let (Xα, dα)α∈Γ be a family of
T0-quasi-metric spaces and let (A, dA) be a T0-quasi-metric space. If Aα ⊆ Xα

and fix some isometry ϕα : A → Aα whenever α ∈ Γ. If (X, d) is the coproduct
of Xα amalgamated along A or ϕα, then we call the T0-quasi-metric space (X, d)
the gluing of (Xα, dα)α∈Γ along A or ϕα.

Proposition 3.3. Let (Xα, dα)α∈Γ be a family of Isbell-convex T0-quasi-metric
spaces and let A be an externally Isbell-convex subset relative to (Xα, dα) when-
ever α ∈ Γ. If (X, d) is the T0-quasi-metric space obtained by gluing the fam-
ily (Xα, dα)α∈Γ of Isbell-convex T0-quasi-metric spaces along the set A, then for
distd(x,A) = r and distd(A, x) = s, there exists a ∈ A ∩ [Cdα(x, r) ∩ Cd−1

α
(x, s)]

such that
d(x, y) = d(x, a) + d(a, y)

and
d(y, x) = d(y, a) + d(a, x)

whenever x ∈ Xα and y ∈ Xα′ with α 6= α
′.

Proof. Consider the set A′ = A ∩ [Cdα(x, r) ∩ Cd−1
α

(x, s)] 6= ∅.
For any α ∈ Γ, we have

dα(x, a) = dα(x, a)− r + r,

and
dα(a, x) = s+ dα(a, x)− s,

then
A
′′
= A ∩ [Cdα(x, r) ∩ Cd−1

α
(x, s)] ∩ [Cdα(a, dα(a, x)− s) ∩ Cd−1

α
(a, dα(x, a)− r)] 6= ∅,

by the external Isbell-convexity of A.
Let a′ ∈ A′′. Then

dα(x, a
′
) ≤ dα(x, a)− r and dα(a

′
, a) ≤ r, (3.1)

and
dα(a, a

′
) ≤ s and dα(a

′
, x) ≤ dα(a, x)− s. (3.2)
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Moreover, for a ∈ A′ = A∩ [Cdα(x, r)∩Cd−1
α

(x, s)] and a′ ∈ A′′ . From inequalities
in (3.1), we have

dα(x, a
′
) + dα′ (a

′
, y) ≤ dα(x, a

′
) + dα′ (a

′
, a) + dα′ (a, y) ≤ dα(x, a) + dα(a, y).

Therefore,

d(x, y) = inf
a∈A′
{dα(x, a) + dα′ (a, y)} = distα(x,A

′
) + distα′ (A

′
, y).

Hence
d(x, y) = r + distα′ (A

′
, y),

since distα(x,A
′
) = distα(x,A) = r.

By similar arguments and inequalities in (3.2), we have

d(y, x) = distα′ (y, A
′
) + s.

It follows that A′ is externally Isbell-convex by Lemma 2.6 and A is an exter-
nally Isbell-convex set relative to Xα whenever α ∈ Γ. Moreover, since A′ ⊆ A
then by Proposition 2.10, we have that A′ is externally Isbell-convex relative to
Xα whenever α ∈ Γ. Thus

∅ 6= C = [Cd(x, r) ∩ Cd−1(x, s)] ∩ [Cd(y, distα′ (A
′
, y)) ∩ Cd−1(y, distα′ (y, A

′
))].

If a ∈ C, then

d(x, y) ≤ d(x, a) + d(a, y) ≤ distα(x,A
′
) + distα′ (A

′
, y) ≥ d(x, y).

Hence, d(x, y) = d(x, a) + d(a, y).
Similarly, we have d(y, x) = d(y, a) + d(a, x). �

Proposition 3.4. Let (Xα, dα)α∈Γ be a family of Isbell-convex T0-quasi-metric
spaces and let A be a weakly externally Isbell-convex subset relative to (Xα, dα)
whenever α ∈ Γ. If (X, d) is the T0-quasi-metric space obtained by gluing the fam-
ily (Xα, dα)α∈Γ of Isbell-convex T0-quasi-metric spaces along the set A, then there
exist points a ∈ Cd(x,dist(x,A))∩Cd−1(x,dist(A, x))∩A and a′ ∈ Cd(x

′,dist(x′, A))∩
Cd−1(x′,dist(A, x′)) ∩A such that

d(x, x′) = d(x, a) + d(a, a′) + d(a′, x′),

whenever x ∈ Xα and x′ ∈ Xα′ .

Proof. Suppose that A is weakly externally Isbell-convex in Xα whenever α ∈ Γ.
Then there exist

a ∈ Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A
and

a′ ∈ Cd(x′, dist(x′, A)) ∩ Cd−1(x′, dist(A, x′)) ∩ A
such that d(x, y) = d(x, a) + d(a, y) and (y, x′) = d(y, a′) + d(a′, x′) by Propo-
sition 2.15. Let C := Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A and let C ′ :=
Cd(x

′, dist(x′, A)) ∩ Cd−1(x′, dist(A, x′)) ∩ A.
Then

d(x, x′) ≤ d(x, a)+d(a, a′)+d(a, x′) ≤ dist(x,A)+dist(C,C ′)+dist(A, x′). (3.3)
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Furthermore,
dist(x,A) + dist(C,C ′) + dist(A, x′) ≥ d(x, x′) (3.4)

by the triangle inequality and taking the infimum on C and C ′. Combining (3.3)
and (3.4), we have

d(x, x′) = d(x, a) + d(a, a′) + d(a′, x′).

�
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